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Introduction

Glioblastoma
Glial cells Tumor

Nicholas F. Brown, et al. Cancers. 2022; Quinn T. Ostrom, et al. Neuro-Oncology, 2015; Evan Calabrese, et al. Radiology: Artificial Intelligence 2022.

Prevalence: ~3/100 000 per year

Poor prognosis

• Average survival: 9 months

• 41% survival after 1 years

• 13% survival after 2 years

Glioblastoma on different MRI modalitiesFrequent MRI scans to assess treatment



Response Assessment 

in Neuro-Oncology 

(RANO) criteria

Complete Response

Partial Response

Stable Disease

Progressive Disease

Evan Calabrese, et al. Radiology: Artificial Intelligence 2022; Patrick Y. Wen, et al., Journal of Clinical Oncology 2010

GOAL: To analyse and compare 

different Deep Learning approaches 

for RANO criteria classification based 

on two consecutive MRI acquisitions

Motivation
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Methods – Data

LUMIERE  

longitudinal

dataset

• T1w

• CT1 (T1w contrast enhanced)

• T2w

• FLAIR

• Clinical Data

• RANO classification

638 timepoints

91 patients

Time

t0 t1 t2

Class Prevalence

Progressive Disease (PD) 67%

Stable Disease (SD) 20%

Progressive Response (PR) 6%

Complete Response (CR) 7%

Yannick Suter, et al., Scientific Data Data, 2022
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Methods – Pipeline
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LUMIERE dataset

Timepoint 1

Timepoint 2

Data Model Training

Performance Metrics:

      - Balanced Accuracy

      - F1-Score

      - Precision

      - Recall

Model

Weight 

Initialization

Model Testing

Training Setup:
      - 100 Epochs

      - Cross Entropy Loss

      - AdamW Optimizer

      - LR = 1e-4

      - Patience = 10

5-fold Cross Validation

80/20 Stratified Split



Methods – Tested Approaches

2. Combinations of modalities

t2

t1

Combination of Modalities Size of Dataset

CT1+T1+T2+FLAIR 337

CT1+FLAIR 344

T1+T2+FLAIR 338

CT1 355

T1+FLAIR 338

3. Model Architectures

➢ DenseNets: 

•  DenseNet 121

•  DenseNet 169 

•  DenseNet 264

➢ Vision Transformer (ViT)

➢ AlexNet3D

1. Subtraction of timepoints

t2

t1

-

=
t2 - t1
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Methods – Tested Approaches

4. Pretraining
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➢ Self-Supervised Rotation Classifier

➢ MedMNIST Organ Classifier

➢ MedicalNet Segmentation Encoder 

5. Use of Clinical Data

+
Clinical Data Value

Age 66

Sex M

IDH WT

MGMT F

Time from 1st scan 15w

Pretraining Training



Methods – Explainability
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Class Activation Maps Saliency Maps

⟶ Gradients with respect to inputs

⟶ Granular impact of input

with: Grad-Cam package

⟶ Coarse heatmap

⟶ Weighted Average of Feature Maps by the gradients

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam
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Results – Subtraction

,

t2t1 t2 - t1

⟶ No subtraction was done 

in the next stages

• Similar BA

• Slight decrease in Recall and Precision

• Decrease in F1-Score

Balanced Accuracy F1-Score

RecallPrecision

WithWithout WithWithout

vs

Approach



12

Results – Modalities

⟶ The combination that uses T1 + T2 + FLAIR 

was used henceforth

• Higher BA in T1+T2+FLAIR

• Higher Precision in T1+FLAIR

• Increased F1 Score in T1+FLAIR

vs

Balanced Accuracy F1-Score

RecallPrecision

Approach
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Results – Architectures

• DenseNets performed better than ViT and AlexNet3D

• More complex DenseNets improve performance

⟶ DenseNet264 has overall 

better performance

Approach

vs

Balanced Accuracy F1-Score

RecallPrecision
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None of the pretraining options improved the 

results over doing no pretraining

Results – Pretraining

⟶ No pretraining was done

Balanced Accuracy F1-Score

Precision Recall

+

Approach



• BA is higher when clinical data is not used
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Results – Clinical Data

⟶ Clinical Data was not inputted

Balanced Accuracy F1-Score

RecallPrecision

WithWithout WithWithout

+

Approach
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Best Results

No Clinical Data InputtedNo pretrainingDenseNet264T1+T2+FLAIRNo subtraction of timepoints

t2

t1

DenseNet264

Progressive Disease

Stable Disease

Stable Response

Complete Response

T1w T2w FLAIR



Results – Explainability
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PD=Progressive Disease; SD=Stable Disease; PR=Progressive Response; CR=Complete Response

Ground Truth 



Results – Explainability
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➢ Tumor is not highlighted in some cases

Ground Truth 

PD=Progressive Disease; SD=Stable Disease; 

PR=Progressive Response; CR=Complete Response



Results – Explainability
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PD=Progressive Disease; SD=Stable Disease; PR=Progressive Response; CR=Complete Response

Ground Truth 



Results – Explainability

20➢ High probability of being CR
➢ Correct prediction with 

unexpected highlighted region
PD=Progressive Disease; SD=Stable Disease; 

PR=Progressive Response; CR=Complete Response

Ground Truth 



Conclusion
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Models tested have poor performance

Complex problem

Small dataset size hinders learning

Test other approaches to increase performance

Need for Open Access Datasets

Importance of Explainability in Healthcare

Check out the preprint
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