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Introduction
Glioma

Glial cells Tumor

Ependymal cells

Astrocytes
Microglial cells

Oligodendrocytes

Functions:
• Maintain homeostasis
• Create myelin
• Support and protect

Glioma incidence: ~5/100 000 per year

Larjavaara, S., et al., Neuro-oncol., 2007; Ho, V. K. Y., et al., Eur. J. Cancer, 2014; Wen, P. Y., et al., J. Clin. Oncol., 2010
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Introduction
GOAL: To analyse and compare

different Deep Learning approaches

for RANO criteria classification based

on two consecutive MRI acquisitions

Larjavaara, S., et al., Neuro-oncol., 2007; Ho, V. K. Y., et al., Eur. J. Cancer, 2014; Wen, P. Y., et al., J. Clin. Oncol., 2010
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Methods – Data

LUMIERE  
longitudinal
dataset

• T1w

• CT1 (T1w contrast enhanced)

• T2w

• FLAIR

• Clinical Data

• RANO classification

638 timepoints

91 patients

Time
t0 t1 t2

Class Prevalence
Progressive Disease (PD) 67%

Stable Disease (SD) 20%
Progressive Response (PR) 6%
Complete Response (CR) 7%

Suter, Y., et al., Scientific Data Data, 2022
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Methods – Pipeline
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LUMIERE dataset

Timepoint 1

Timepoint 2

Data Model Training

Model

Weight 
Initialization Performance Metrics:

- Balanced Accuracy
- F1-Score
- Precision
- Recall

Model Testing

Training Setup:
- 100 epochs maximum
- Cross Entropy loss
- AdamW optimizer
- LR = 1e-4
- Patience = 10

5-fold Cross Validation
80/20 Stratified Split



Methods – Tested Approaches 
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Model Training

Model

Weight 
Initialization

Pretraining
Architecture

Timepoint 1

Timepoint 2

LUMIERE dataset

3. Model Architectures
4. Pretraining

1. Subtraction of Timepoints

2. Combination of modalities

Data



Methods – Tested Approaches 
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LUMIERE dataset

Timepoint 1

Timepoint 2

Clinical Data

Clinical Data Value
Age 66
Sex M
IDH WT

MGMT F
Time from 1st scan 15w

Data
Model Training

Model

Weight 
Initialization

Pretraining
Architecture

5. Clinical Data

3. Model Architectures
4. Pretraining

1. Subtraction of Timepoints

2. Combination of modalities



Methods – Tested Approaches
2. Combinations of modalities

t2

t1

Combination of Modalities Size of Dataset

CT1+T1+T2+FLAIR 337

CT1+FLAIR 344

T1+T2+FLAIR 338

CT1 355

T1+FLAIR 338

3. Model Architectures

Ø Densenets: 

• Densenet 121

• Densenet 169 

• Densenet 264

Ø Vision Transformer 

Ø Alexnet3D

1. Subtraction of timepoints

t2

t1

-

=
t2 - t1
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Methods – Tested Approaches
4. Pretraining
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Ø Self-Supervised Rotation Classifier

Ø MedMNIST Organ Classifier

Ø MedicalNet Segmentation Encoder

5. Use of Clinical Data

+
Clinical Data Value

Age 66

Sex M

IDH WT

MGMT F

Time from 1st scan 15w

Task 1 Task 2

Approaches will be tested sequencially
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Results – Subtraction

,
t2t1 t2 - t1

⟶ No subtraction was done 
in the next stages

• Similar BA

• Slight decrease in Recall and Precision

• Decrease in F1-Score

Balanced Accuracy F1-Score

RecallPrecision

WithWithout WithWithout

vs

Approach
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Results – Modalities

⟶ The combination that uses T1 + T2 + FLAIR 
was used henceforth

• Higher BA in T1+T2+FLAIR

• Higher Precision in T1+FLAIR

• Increased F1 Score in T1+FLAIR

vs
Balanced Accuracy F1-Score

RecallPrecision

All
CT1

CT1+
FLA

IR

T1+
FLA

IR

T1+
T2+

FLA
IR All

CT1

CT1+
FLA

IR

T1+
FLA

IR

T1+
T2+

FLA
IR

Approach
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Results – Architectures

• DenseNets performed better than ViT and AlexNet3D

• More complex DenseNets improve performance

⟶ DenseNet264 has overall 
better performance

Approach

vs

Den
se

Net1
21

Den
se
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69
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64 ViT

Alex
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D
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Alex
Net3

D

Balanced Accuracy F1-Score

RecallPrecision
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None of the pretraining options improved the 

results over doing no pretraining

Results – Pretraining

⟶ No pretraining was done

Balanced Accuracy F1-Score

Precision

No P
ret

rai
nin

g

Recall

Self
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up
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Med
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+
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• BA is higher when clinical data is not used

• Using Clinical Data improves Precision

• Increased F1-Score when using Clinical Data
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Results – Clinical Data

⟶ Clinical Data was not inputted

Balanced Accuracy F1-Score

RecallPrecision

WithWithout WithWithout

+

Approach



17

Best Results

No Clinical Data InputtedNo pretrainingDenseNet264T1+T2+FLAIRNo subtraction of timepoints

t2

t1

Densenet264

Progressive Disease

Stable Disease

Stable Response

Complete Response



Methods – Explainability

18Teixeira, L. O., Pereira, R. M., Bertolini, D., Oliveira, L. S., Nanni, L., Cavalcanti, G. D. C., & Costa, Y. M. G. (2021). Impact of Lung Segmentation on the Diagnosis and Explanation of 
COVID-19 in Chest X-ray Images. Sensors, 21(21), 7116.

Burned-in 
Annotations

Important to check 
impactful regions 
for classification



Methods – Explainability

19with: Grad-Cam package

Class Activation Maps Saliency Maps
C1 C2 C3

⟶ Last convolutional layer

https://github.com/jacobgil/pytorch-grad-cam


Methods – Explainability
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∑𝑤!𝑓!
∑𝑤!

⟶ Weighted Average of Feature Maps by the gradients

with: Grad-Cam package

Class Activation Maps Saliency Maps

⟶ Last convolutional layer

https://github.com/jacobgil/pytorch-grad-cam


Methods – Explainability
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Class Activation Maps Saliency Maps

⟶ Coarse heatmap

with: Grad-Cam package

C1 C2 C3

⟶ Gradients with respect to inputs

⟶ Weighted Average of Feature Maps by the gradients

⟶ Last convolutional layer

https://github.com/jacobgil/pytorch-grad-cam


Methods – Explainability
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Class Activation Maps Saliency Maps
⟶ Gradients with respect to inputs
⟶ Granular impact of input

with: Grad-Cam package

⟶ Coarse heatmap

⟶ Weighted Average of Feature Maps by the gradients

⟶ Last convolutional layer

https://github.com/jacobgil/pytorch-grad-cam


Results – Explainability
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Ø Tumor is not highlighted in some casesPD=Progressive Disease; SD=Stable Disease;

PR=Progressive Response; CR=Complete Response

Ground Truth 



Results – Explainability
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Ø High probability of being CRØ Correct prediction with 

unexpected highlighted region
PD=Progressive Disease; SD=Stable Disease;
PR=Progressive Response; CR=Complete Response

Ground Truth 



Conclusion
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Models tested have poor performance

Complex problem

Small dataset size hinders learning

Test other approaches to increase performance

Need for Open Access Datasets

Importance of Explainability in Healthcare
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