

Towards a deep learning approach for classifying response to treatment in glioblastomas

Ana Matoso^{1*}, Catarina Passarinho¹, Marta Loureiro¹, José Maria Moreira², Patrícia Figueiredo¹, Rita G Nunes¹

¹Institute for Systems and Robotics – Lisboa and Department of Bioengineering, Instituto Superior Técnico,

Universidade de Lisboa, Portugal;

²Learning Health, Hospital da Luz, Lisbon, Portugal

*anamatoso@tecnico.ulisboa.pt

6th Students Meeting of Mind-Brain College of ULisboa

Lisbon, Portugal

Introduction

Glial cells Tumor

Glioma incidence: ~5/100 000 per year

Introduction

Glial cells Tumor

Glioma incidence: ~5/100 000 per year

Gliomas Grade I Low Grade II Grade III Grade IV High	Grade worse outcome
--	------------------------

Response Assessment in Neuro-Oncology (RANO) criteria

Complete Response Partial Response Stable Disease Progressive Disease

	Complete Response	Partial Response	Stable Disease	Progressive Disease ^a
T1-Gd+	None	≥50% ↓	<50% ↓– <25% ↑	≥ 25% ↑*
T2/FLAIR	Stable or \downarrow	Stable or \downarrow	Stable or \downarrow	↑*
New lesion	None	None	None	Present*
Corticosteroids	None	Stable or \downarrow	Stable or \downarrow	NA
Clinical status	Stable or ↑	Stable or ↑	Stable or ↑	↓*
Requirement for response	All	All	All	Any*

GOAL: To analyse and compare different **Deep Learning** approaches for **RANO criteria classification** based on two consecutive MRI acquisitions

	Complete Respo	onse Partial Respor	nse Stable Disea	se Progressive Disease ^a
T1-Gd+	None	\geq 50% \downarrow	<50% ↓- <25% ↑	\geq 25% \uparrow *
T2/FLAIR	Stable or ↓	Stable or \downarrow	Stable or \downarrow	↑*
New lesion	None	None	None	Present*
Corticosteroids	None	Stable or \downarrow	Stable or \downarrow	NA
Clinical status	Stable or ↑	Stable or ↑	Stable or ↑	↓*
Requirement for resp	oonse All	All	All	Any*

Glioma

Introduction

Glial cells Tumor

Glioma incidence: ~5/100 000 per year

Gliomas Grade I Grade II Grade III Grade IV High Grade

Response Assessment in Neuro-Oncology (RANO) criteria

Complete Response Partial Response Stable Disease Progressive Disease

Methods – Data

LUMIERE longitudinal dataset

- CT1 (T1w contrast enhanced)
 - T2w

T1w

٠

- FLAIR
- Clinical Data
- RANO classification

	Class	Prevalence
638 timepoints 91 patients	Progressive Disease (PD)	67%
	Stable Disease (SD)	20%
	Progressive Response (PR)	6%
	Complete Response (CR)	7%

Suter, Y., et al., Scientific Data Data, 2022

80/20 Stratified Split

Methods – Pipeline

- 100 epochs maximum
- Cross Entropy loss
- AdamW optimizer
- LR = 1e-4
- Patience = 10

M©NAÍ Ó PyTorch

1. Subtraction of Timepoints

2. Combination of modalities

- 1. Subtraction of Timepoints
- 2. Combination of modalities
- 3. Model Architectures
- 4. Pretraining

- 1. Subtraction of Timepoints
- 2. Combination of modalities
- 3. Model Architectures
- 4. Pretraining
- 5. Clinical Data

1. Subtraction of timepoints

2. Combinations of modalities t_2 t_2 t_1

Combination of Modalities	Size of Dataset
CT1+T1+T2+FLAIR	337
CT1+FLAIR	344
T1+T2+FLAIR	338
CT1	355
T1+FLAIR	338

3. Model Architectures

- > Densenets:
 - Densenet 121
 - Densenet 169
 - Densenet 264
- Vision Transformer
- Alexnet3D

Approaches will be tested sequencially

Results – Subtraction

- Similar BA
- Slight decrease in Recall and Precision
- Decrease in F1-Score

 \rightarrow No subtraction was done in the next stages

Results – Modalities

- Higher BA in T1+T2+FLAIR
- Higher Precision in T1+FLAIR
- Increased F1 Score in T1+FLAIR

 \rightarrow The combination that uses T1 + T2 + FLAIR was used henceforth

0.0

Results – Architectures

Precision

vil Alether 3D

0.6

0.4

0.2

Denselvet 121 vertico Perselvet 264

Densenet 21 persenet 00 persenet 20 AlexNet3D

- DenseNets performed better than ViT and AlexNet3D
- More complex DenseNets improve performance

→ DenseNet264 has overall better performance

Results – Pretraining

Approach

None of the pretraining options improved the

results over doing no pretraining

 \rightarrow No pretraining was done

0.0

Without

Results – Clinical Data

0.0

With

Without

With

- BA is higher when clinical data is not used
- Using Clinical Data improves Precision

• Increased F1-Score when using Clinical Data

 \rightarrow Clinical Data was not inputted

Best Results

Class Activation Maps

 \rightarrow Last convolutional layer

Saliency Maps

with: Grad-Cam package

Class Activation Maps

- \rightarrow Last convolutional layer
- \rightarrow Weighted Average of Feature Maps by the gradients

Saliency Maps

with: Grad-Cam package

Class Activation Maps

- \rightarrow Last convolutional layer
- \rightarrow Weighted Average of Feature Maps by the gradients
- \rightarrow Coarse heatmap

with: Grad-Cam package

Saliency Maps

 \rightarrow Gradients with respect to inputs

Class Activation Maps

- \rightarrow Last convolutional layer
- \rightarrow Weighted Average of Feature Maps by the gradients
- \rightarrow Coarse heatmap

with: Grad-Cam package

Saliency Maps

- \rightarrow Gradients with respect to inputs
- \rightarrow Granular impact of input

Results – Explainability

PD=Progressive Disease; SD=Stable Disease; PR=Progressive Response; CR=Complete Response

Tumor is not highlighted in some cases

1.0

0.5

0.0

10-4

10⁻⁵

10-7

Results – Explainability

PD=Progressive Disease; SD=Stable Disease; PR=Progressive Response; CR=Complete Response

Correct prediction with \geq unexpected highlighted region

Class CR

High probability of being CR \geq

8.7

13.8

8.3

69.2

24

Conclusion

Models tested have poor performance

Complex problem

Small dataset size hinders learning

Test other approaches to increase performance

Need for Open Access Datasets

Importance of Explainability in Healthcare

Acknowledgements

LaSEEB

Grant: 2023.03810.BDANA

LARSyS Laboratory of Robotics and Engineering Systems

Grants' DOI: 10.54499/LA/P/0083/2020, 10.54499/UIDP/50009/2020, and 10.54499/UIDB/50009/2020

José Maria Moreira from Learning Health