

Towards a deep learning approach for classifying response to treatment in glioblastomas

Ana Matoso^{1*}, Catarina Passarinho¹, Marta Loureiro¹, **José Maria Moreira2, Patrícia Figueiredo1, Rita G Nunes1**

1Institute for Systems and Robotics – Lisboa and Department of Bioengineering, Instituto Superior Técnico,

Universidade de Lisboa, Portugal;

2Learning Health, Hospital da Luz, Lisbon, Portugal

*anamatoso@tecnico.ulisboa.pt

6th Students Meeting of Mind-Brain College of ULisboa **Lick and College of ULisboa** Lisbon, Portugal

Introduction

Glioma Glial cells Tumor

Glioma incidence: ~5/100 000 per year

Introduction

Glioma Glial cells Tumor

Glioma incidence: ~5/100 000 per year

Grade I Grade II Grade III Grade IV Gliomas Grade II Low Grade Worse outcome Low Grade High Grade

Response Assessment in Neuro-Oncology (RANO) criteria Complete Response Partial Response Stable Disease Progressive Disease

Glioma Introduction

Glial cells Tumor

Glioma incidence: ~5/100 000 per year

Grade I Grade II Grade III Grade IV Gliomas Grade II Low Grade Worse outcome Low Grade High Grade

Response Assessment in Neuro-Oncology (RANO) criteria Complete Response Partial Response Stable Disease Progressive Disease **GOAL:** To analyse and compare different **Deep Learning** approaches for **RANO criteria classification** based on two consecutive MRI acquisitions

• RANO classification

Methods – Data

LUMIERE longitudinal dataset

• T1w • CT1 (T1w contrast enhanced) • T2w • FLAIR • Clinical Data 638 timepoints 91 patients **Class Prevalence** Progressive Disease (PD) | 67% Stable Disease (SD) | 20% Progressive Response (PR) | 6% Complete Response (CR) | 7%

Suter, Y., et al., Scientific Data Data, 2022

Methods – Pipeline

80/20 Stratified Split

- Cross Entropy loss
- AdamW optimizer
- $-LR = 1e-4$
- Patience = 10

6

MONAT O PyTorch

1. Subtraction of Timepoints

2. Combination of modalities

7

- 1. Subtraction of Timepoints
- 2. Combination of modalities
- 3. Model Architectures
- 4. Pretraining

- 1. Subtraction of Timepoints
- 2. Combination of modalities
- 3. Model Architectures
- 4. Pretraining
- 5. Clinical Data

1. Subtraction of timepoints

2. Combinations of modalities $t₂$ t_1

3. Model Architectures

- Ø Densenets:
	- **Densenet 121**
	- Densenet 169
	- Densenet 264
- Ø Vision Transformer
- Ø Alexnet3D

Approaches will be tested sequencially

Results – Subtraction

- Similar BA
- Slight decrease in Recall and Precision
- Decrease in F1-Score

 \rightarrow No subtraction was done in the next stages

Results – Modalities

Approach

- Higher BA in T1+T2+FLAIR
- Higher Precision in T1+FLAIR
- Increased F1 Score in T1+FLAIR

 \rightarrow The combination that uses T1 + T2 + FLAIR was used henceforth

Results – Architectures

- DenseNets performed better than ViT and AlexNet3D
- More complex DenseNets improve performance

 \rightarrow DenseNet264 has overall better performance

Results – Pretraining

+

Approach

None of the pretraining options improved the

results over doing no pretraining

 \rightarrow No pretraining was done

 0.0

Results – Clinical Data

Without With Without With

 0.0

- BA is higher when clinical data is not used
- Using Clinical Data improves Precision

• Increased F1-Score when using Clinical Data

 \rightarrow Clinical Data was not inputted

Best Results

Class Activation Maps

 \rightarrow Last convolutional layer

with: Grad-Cam package

Class Activation Maps

- \rightarrow Last convolutional layer
- \rightarrow Weighted Average of Feature Maps by the gradients

with: Grad-Cam package

Class Activation Maps

- \rightarrow Last convolutional layer
- \rightarrow Weighted Average of Feature Maps by the gradients
- \rightarrow Coarse heatma[p](https://github.com/jacobgil/pytorch-grad-cam)

with: Grad-Cam package

 \rightarrow Gradie

Class Activation Maps

- \rightarrow Last convolutional layer
- \rightarrow Weighted Average of Feature Maps by the gradients
- \rightarrow Coarse heatma[p](https://github.com/jacobgil/pytorch-grad-cam)

with: Grad-Cam package

 \rightarrow Gradie

 \rightarrow Granu

Results – Explainability

PR=Progressive Response; CR=Complete Response

 -1.0

 $\big|0.5$

 $E10^{-4}$

 10^{-5} 10^{-6}

Results – Explainability

PD=Progressive Disease; SD=Stable Disease; which are the Correct prediction with
PR=Progressive Response; CR=Complete Response and the supercted highlighted region

> Correct prediction with
unexpected highlighted region
 \angle Migh probability of being CR 24

Class CR

69.2

Conclusion

Models tested have poor performance

Complex problem

Small dataset size hinders learning

Test other approaches to increase performance

Need for Open Access Datasets

Importance of Explainability in Healthcare

Acknowledgements

LaSEEB

Grant: 2023.03810.BDANA Grants' DOI:

LARSyS Laboratory of Robotics and Engineering Systems

10.54499/LA/P/0083/2020, 10.54499/UIDP/50009/2020, and 10.54499/UIDB/50009/2020

José Maria Moreira from Learning Health